Quantized hydrodynamic model and the dynamic structure factor for a trapped Bose gas.

نویسندگان

  • Wu
  • Griffin
چکیده

We quantize the recent hydrodynamic analysis of Stringari for the low-energy collective modes of a trapped Bose gas at T = 0. This is based on the timedependent Gross-Pitaevskii equation, but omits the kinetic energy of the density fluctuations. We diagonalize the hydrodynamic Hamiltonian in terms of the normal modes associated with the amplitude and phase of the inhomogeneous Bose order parameter. These normal modes provide a convenient basis for calculating observable quantities. As applications, we calculate the depletion of the condensate at T = 0 as well as the inelastic light-scattering cross section S(q, ω) from low-energy condensate fluctuations. The latter involves a sum over all normal modes, with a weight proportional to the square of the q Fourier component of the density fluctuation associated with a given mode. Finally, we show how the Thomas-Fermi hydrodynamic description can be derived starting from the coupled Bogoliubov equations. PACS numbers: 03.75.Fi, 67.40.Db, 78.35.+c Typeset using REVTEX 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c on d - m at / 9 71 10 36 v 3 4 J an 1 99 8 Hydrodynamic damping in trapped Bose gases

Griffin, Wu and Stringari have derived the hydrodynamic equations of a trapped dilute Bose gas above the Bose-Einstein transition temperature. We give the extension which includes hydrodynamic damping, following the classic work of Uehling and Uhlenbeck based on the Chapman-Enskog procedure. Our final result is a closed equation for the velocity fluctuations δv which includes the hydrodynamic d...

متن کامل

ar X iv : c on d - m at / 9 71 10 36 v 4 6 J an 1 99 8 Hydrodynamic damping in trapped Bose gases

Griffin, Wu and Stringari have derived the hydrodynamic equations of a trapped dilute Bose gas above the Bose-Einstein transition temperature. We give the extension which includes hydrodynamic damping, following the classic work of Uehling and Uhlenbeck based on the Chapman-Enskog procedure. Our final result is a closed equation for the velocity fluctuations δv which includes the hydrodynamic d...

متن کامل

ar X iv : c on d - m at / 9 71 10 36 v 2 5 D ec 1 99 7 Hydrodynamic damping in trapped Bose gases

Griffin, Wu and Stringari have derived the hydrodynamic equations of a trapped dilute Bose gas above the Bose-Einstein transition temperature. We give the extension which includes hydrodynamic damping, following the classic work of Uehling and Uhlenbeck based on the Chapman-Enskog procedure. Our final result is a closed equation for the velocity fluctuations δv which includes the hydrodynamic d...

متن کامل

ar X iv : c on d - m at / 9 71 10 36 v 1 5 N ov 1 99 7 Hydrodynamic damping in trapped Bose gases

Griffin, Wu and Stringari have derived the hydrodynamic equations of a trapped dilute Bose gas above the Bose-Einstein transition temperature. We give the extension which includes hydrodynamic damping, following the classic work of Uehling and Uhlenbeck based on the Chapman-Enskog procedure. Our final result is a closed equation for the velocity fluctuations δv which includes the hydrodynamic d...

متن کامل

Two-Fluid Hydrodynamics in Trapped Bose Gases and in Superfluid Helium

A review is given of recent theoretical work on the superfluid dynamics of trapped Bose gases at finite temperatures, where there is a significant fraction of non-condensate atoms. One can now reach large enough densities and collision cross-sections needed to probe the collective modes in the collisiondominated hydrodynamic region where the gas exhibits characteristic superfluid behavior invol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. A, Atomic, molecular, and optical physics

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 1996